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Abstract
In this paper, two simple models of lattice vesicles in two and in three
dimensions are examined. Lattice vesicles have a rich mathematical nature,
and the combinatorial and scaling properties of square and rectangular lattice
vesicle models are investigated and then generalized to three dimensions. The
phase diagram of the vesicles also includes a multicritical point, and scaling
of the generating functions of these models are studied to test the models for
tricritical scaling behaviour. In the models of square vesicles in the square
lattice, and cubical vesicles in the cubic lattice, the tricritical scaling forms
are explicitly confirmed. However, rectangular vesicles in the square lattice,
and rectangular box vesicles in the cubic lattice, appear not to conform to the
expected tricritical scaling forms.

PACS numbers: 05.50.+q, 02.10.Ox
Mathematics Subject Classification: 82B41, 82B20, 82B32, 05A30, 05A17

1. Introduction

Models of lattice vesicles (sometimes called polyominoes) in the two-dimensional square
lattice have received considerable attention in the literature [3–5]. The statistical mechanics
of these models is particularly interesting since the phase diagram may include multicritical
points. Many of these models are also ‘exactly solvable’ in the sense that the generating
function can be determined in closed form. The mathematical description of these models is
rich, drawing on combinatorics, real and complex analysis, and asymptotic analysis to examine
scaling behaviour around multicritical points.

In this paper, I consider two simple models of lattice vesicles in two dimensions and
then generalize them to their three-dimensional counterparts. I test the scaling assumptions in
the models in this paper, and find that, while a model of two-dimensional squares and three-
dimensional cubes exhibits the expected scaling behaviour, their generalization to models of
rectangular and rectangular box vesicles in three dimensions are apparently incomplete.

0305-4470/04/133903+30$30.00 © 2004 IOP Publishing Ltd Printed in the UK 3903
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Consider a model of lattice vesicles composed of n unit squares and m perimeter edges.
The most fundamental quantity in the model is cn(m), which is the number of vesicles of
perimeter m edges and area (or size) n unit squares. The generating function is a two-variable
function

G(t, q) =
∑
n�0


∑

m�0

cn(m)tm


 qn. (1)

In many directed models G(t, q) can be determined either in closed form, or as an infinite
series or as an infinite product. For example, the well-known generating function of a partition
model of lattice vesicles is given by [24]

P(t, q) =
∞∑

n=1

[ ∞∑
m=1

pn,mtm

]
qm =

∞∑
n=1

t4nqn2∏n
i=1(1 − t2qi+1)2

. (2)

In this model, pn,m is the number of partitions of n into a partition polygon with total perimeter
length m.

Partitions have been studied widely in the mathematical literature, see for example [8,
10, 16, 19]. Other directed models of lattice vesicles, related to partitions, such as stack
polygons [19, 27], staircase polygons [4, 6, 25], and other partially or fully directed models of
lattice vesicles (including convex, column-convex and histogram polygons) have also received
considerable attention in the literature, see for example [1, 11, 12, 18, 21] and numerous other
references.

Tricritical scaling theory [5, 13] indicates that the generic generating function G(t, q)

should exhibit certain scaling behaviour in its asymptotic regime. In particular, there are
scaling fields g and s such that1

G(t, q) ∼ A(t, q) + g2−αtH(g−φs) (3)

in its asymptotic regime (as both g → 0+ and s → 0+), where A(t, q) is an analytic background
term. The scaling fields g and s are related to the generating variables q and t, and αt and
φ are critical exponents that characterize a phase transition in the model. The crossover
exponent φ describes the crossover behaviour between the scaling fields g and s. Along
the curves g−φs = C0 in the gs-plane the generating function has asymptotic behaviour
G(t, q) ∼ A(t, q) + g2−αt , and the singular behaviour in G(t, q) at the critical point is
described by the exponent 2 − αt .

By slightly rearranging the terms in equation (3)), it follows that

G(t, q) ∼ R(t, q) + s2−αuH′(g−φs) (4)

where H′(x) = x−(2−αu)H(x) is still a function of the combined variable gφs. The exponent
αu describes scaling along the s-axis. It is related to φ and αt by the identity

2 − αt

2 − αu

= φ (5)

and this can be demonstrated by noting that

g2−αtH(g−φs) = t2−αu [g−φs]−(2−αu)H(g−φs) = s2−αuH′(g−φs). (6)

1 Standard notation would introduce the scaling fields g and t instead. However, since t is already introduced as a
generating variable, the scaling field instead will be denoted by s. Usually, if the critical point is located at (tc, qc),
then g = |q − qc| ≈ |log(q/qc)| and s = |t − tc| ≈ |log(t/tc)|, or g and s are linear combinations of |q − qc| and
|t − tc|.
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The relation in equation (5) joins the scaling in the generating function as the critical point is
approached into one scaling form describing scaling along both the g and s axes.

The most important thermodynamic quantity in the description of lattice models of vesicles
is the limiting free energy F(t). It may be determined from the generating function by first
defining a partition function Zn(t) by

G(t, q) =
∑
n>0

Zn(t)q
n (7)

where Zn(t) = ∑
m>0 cn(m)tm. The critical curve qc(t) is the radius of convergence of

G(t, q), given by

qc(t) = lim
n→∞[Zn(t)]

−1/n. (8)

Existence of this limit demonstrates the existence of a thermodynamic limit in the model,
and the phases are separated by non-analyticities in the critical curve qc(t). The limiting free
energy is defined by

Fp(t) = lim
n→∞

1

n
log Zn(t) = − log qc(t). (9)

The non-analyticity in Fp(t) is described by the introduction of an exponent α, and then
considering the shape of the limiting free energy close to the critical point:

Fp(t) ∼ C0|t − tc|2−α + analytic terms as t → t+
c . (10)

The exponent α is also called the specific heat exponent, and it describes a singularity in
the specific heat (the second derivative of Fp(t) to log t). In this description, the generating
function G(t, q) may be interpreted as a generalized grand potential, whilst the limiting
free energy (density) Fp(t) includes both entropic and energy contributions (and may be
considered a Helmholtz free energy, if considered from a classical thermodynamic point of
view). The crossover exponent is related to the specific heat exponent by a hyperscaling
relation

2 − α = 1/φ (11)

and this relates the exponents αu and αt finally to the thermodynamic properties of the model,
tying together the grand canonical (or generating function) approach and the canonical (or
free energy) approach into one description of the thermodynamics of the model.

It is known that partition polygons do not conform to tricritical scaling in equations (3)
and (4). In particular, the critical curve for partition polygons in the perimeter–area ensemble
can be read from equation (2), and the limiting free energy is

FP (t) =
{

0 if t � 1
2 log t if t > 1.

(12)

The critical point is located at tc = 1, and since −log t ≈ (1 − t) = s for t → 1+, this shows
that 2 − α = 1. However, the scaling form in equation (3) does not quite apply: putting
q = 1 in P(q, t) shows that P(1, t) = (1 − t2)/(1 − 2t2). Observe that P(1, t) diverges as
2t2 → 1−, away from the critical point at t = 1. Moreover, as q → 1− in P(q, 1), an essential
singularity is approached, and there is no power law description of the scaling near the critical
point. Instead, it appears that P(1, t) ∼ |

√
2−1 − t)|−1 �= s−1 = |1 − t |−1, but tc �=

√
2−1.

This appears contrary to the expected scaling forms proposed by tricritical scaling, and further
study of this model may be necessary.

In this paper, I consider models even simpler than partition polygons, and I examine the
feasibility of the scaling forms in equations (3) and (4). This approach was used for a variety
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of models in the literature, and perhaps the best known verification is for staircase polygons
in [17]. Models of lattice columns, lattice squares and rectangles have also been considered
[18, 19]. Scaling functions for a variety of these models have also been investigated, starting
with the important work of Prellberg on staircase polygons [17], and resulting in a number
of results for lattice polygon models [18, 20, 22]. In at least one case considerable progress
was made for the full model of undirected lattice polygons [23]. I restrict the investigation
to lattice squares and rectangles in this paper, and expand them to their three-dimensional
counterparts. Examination of these models indicates that square and cubical vesicles conform
to the expected scaling forms, and partial results can be obtained in the case of rectangular
and rectangular box vesicles. The generating function S(t, q) of square lattice vesicles in the
perimeter–area ensemble, and T (1, q, p) of cubical vesicles in the area–volume ensemble are
shown to be

S(t, q) = 1

2
+

√
π

2|log q|1/2
G
(

2|log t |√|log q|
)

+ R1 (13)

T (1, q, p) = 1

2
+

1

|log q|1/3
F
(

32 log3 q

log2 p

)
+ R1 (14)

where G(x) = ex2
(1 − erf(x)), and F(x) is a certain sum of hypergeometric functions

multiplied by a power of x.2 The error terms R1 can in both cases be bounded to give uniform
approximations to S(t, q) and T (1, q, p), see equation (39) and theorems 2.4 and 2.8.

In the case of rectangular vesicles in two dimensions, the generating function can be
shown to be approximated by a Lerch-Phi function (see equation (74)):

R(t, q) = t2

|log q|
[ |log q|
|log t2| − Lerch-Phi

(
t2q, 1,

|log t2|
|log q|

)]
+ R1. (15)

The error term R1 can be bounded, but it turns out that (1 − t2q)2R(t, q) is uniformly
approximated. If t = 1, then

R(1, q) = log(1 − q)

log q
+

q

2(1 − q)
− Bqq log q

(1 − q)2
(16)

and in this case, one may show that the function |Bq | � B2, where B2 is the second
Bernoulli number, see corollary 3.2. One may therefore guess that 2 − αt = −1 in this
model, and the appearance of the ratio |log q|/|log t2| in R(t, q) suggest that φ = 1. Since
R(t, 1) = t4/(1 − t2)2, it appears that the value −2 be assigned to 2 − αu; this would be
inconsistent with equation (5). On the other hand, the generating function has a simple pole
along the curve t2q = 1 (see equation (66)), and if q = 1 − ε < 1 and t2 → q−1, then
one may assign 2 − αu = −1, for all small values of ε > 0. This would be consistent with
equation (5).

Finally, only partial results can be obtained for rectangular box vesicles in three
dimensions. In particular, I prove that

B(1, q, 1) =
√

π√
|log q2|

∫ ∞

1

exp(−|log q2|(y(y + 4)/4))

1 − exp(−y|log q2|) erfi
(
y
√

|log q2|/2
)

dy +
Bq√

1 − q2

(17)

B(1, 1, p) = 1

|log p|
∫ p

0

log(1 − y)

log y

dy

y
+

Rp

1 − p
(18)

2 In all these expressions, I assume that the generating variables are chosen within the radius of convergence of the
generating functions.
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1 × 1 2 × 2 3 × 3 4 × 4

Figure 1. Squares in the square lattice. There is exactly one square each of size n × n and they
are generated by S(t, q) in equation (19).

where Bq can be bounded by a constant for all q in the half-open interval [q0, 1), and Rq

can be bounded by a constant for all points (p, q) in the rectangle [p0, 1] × [q0, 1], and
where p0 and q0 are arbitrary but fixed in the open interval (0, 1) (see theorems 3.6 and 3.8).
The integrals in these expressions are divergent; in the first case apparently proportional to
|log q|−1 and in the second case slower than any inverse power of |log p|. In other words, one
may attempt to assign values to the critical exponents, and it appears that 2 − αu = −3/2
while 2 − αt = −1. An approximation to B(1, q, p) (equation (107)) suggests that φ = 2/3,
and this turns out to be consistent with the values for 2 − αt and 2 − αu as suggested by
equation (5). The description of this model is still incomplete.

2. Square and cubical lattice vesicles

It is well known that the generating function of lattice squares can be expressed in terms
of q-deformations of factorials and of the exponential. These are related to θ -functions
[20], exposing a rich mathematical structure that underlies this simple model. Much less is
known about lattice cubes, the three-dimensional version of lattice squares, or even higher
dimensional versions of the model.

2.1. Square vesicles

Consider lattice vesicles of areas 12, 22, 33, . . . , as in figure 1. The generating function in a
perimeter–area ensemble is

S(t, q) =
∞∑

n=0

t4nqn2
(19)

where q generates area in unit squares and t generates perimeter edges.
S(t, q) also may be expressed as a nested product

S(t, q) = 1 + t4q(1 + t4q3(1 + t4q5(1 + t4q7(1 + · · ·)))) (20)

and it satisfies a functional recurrence

S(t, q) = 1 + [t4q]S(t
√

q, q). (21)

S(t, q) is convergent for all |q| < 1, and divergent if |q| > 1. If q = 1, then S(t, 1) =
1/(1 − t4), so that S(t, 1) is convergent if t < 1, and there is a simple pole in the t-plane on
the positive real axis at t = 1. This point may be considered a critical point, and comparison
with equation (4) shows that 2 − αu = −1 where the scaling field s = 1 − t was identified.
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If t = 1 and q < 1, then S(1, q) = ∑∞
n=0 qn2

and the radius of convergence is |q| = 1
in the q-plane. In this instance S(1, q) is related to Ramanujan’s two-variable θ -function
defined by

�(p, q) =
∞∑

n=−∞
p(

n+1
2 )q(

n

2 ) = (−p;pq)∞(−q;pq)∞(pq;pq)∞ (22)

where (t; q)N = ∏N
i=1(1− tqi−1) is the q-Pochhammer symbol, and (q; q)n is the q-analogue

of the factorial, where

(t; q)−1
∞ =

∞∑
n=0

tn

(q; q)n
(23)

is the q-analogue of the exponential. The Jacobi triple product identity then shows that

�(q, q) = −1 + 2
∞∑

n=0

qn2 = (−q; q2)∞(−q; q2)∞(q2; q2)∞. (24)

Thus, S(1, q) may be evaluated in terms of the q-exponential,

S(1, q) = 1
2 (1 + (−q; q2)∞(−q; q2)∞(q2; q2)∞). (25)

The θ -function �(q, q) = φ(q) is also known as Ramanujan’s one-variable φ-function.
Several expressions are known for φ(q); in particular,

φ(q) =
√

1 + 4

(
q

1 − q
− q3

1 − q3
+

q5

1 − q5
− q7

1 − q7
+ · · ·

)

=

√√√√√1 + 8

(
q

1 − q
+

2q2

1 + q2
+

3q3

1 − q3
+

4q4

1 + q4
+ · · ·

)
. (26)

The singularities in φ(q) along the curves 1 − q2n+1 = 0 accumulate on q = 1 in the q-plane;
thus φ(q) has an essential singularity at q = 1 [26]. Ramanujan’s one-variable φ-function has
also been evaluated exactly at some special values of q:

φ(e−√
2π ) = �

(
9
8

)
�
(

5
4

)
√

�
(

1
4

)
√√

2π
φ(e−π ) =

√√
π

�
(

3
4

) φ′(−e−√
3π ) = (4

√
3 − 7)1/8 (27)

see for example [2].
Observe that the derivative of S(t, q) to log q is

∑∞
n=0 n2t4nqn2

, and this is convergent for
all |q| < 1, and for |t | < 1 whenever |q| = 1. In other words, the (left) derivative of S(t, q)

to q is finite along the line q = 1 if t < 1 in the tq-plane. Since S(t, q) is infinite if q > 1,
this proves (together with equation (26)) that S(t, q) has an essential singularity along the line
q = 1, t � 1 in the tq-plane.

For other values of t, it can be verified that

S(t, q) + S(1/t, q) = 1 +
∞∑

n=−∞
t4nqn2 = 1 + (−qt; q2)∞(−q/t; q2)∞(q2; q2)∞. (28)

This is convergent for all values of q < 1, as noted above. If q = 1 and t > 1, then S(t, q) is
divergent. The q-exponentials in equation (28) are explicitly equal to

(−qt; q2)∞(−q/t; q2)∞(q2; q2)∞ =
∞∏
i=1

((1 + q2i+1t)(1 + q2i+1/t)(1 − q2i )) (29)
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and by taking logarithms and noting that (1 + q2i+1t)(1 + q2i+1/t) � (1 + 2q2i+1) for all t � 0,
while applying the bound log(1 + x) � x − x2/2, the lower bound

log((−qt; q2)∞(−q/t; q2)∞(q2; q2)∞) �
∞∑
i=1

log((1 + 2q2i+1)(1 − q2i ))

�
∞∑
i=1

log(1 + 2q2i+1 − q2i − 2q4i+1)

� (2 + · · · − 4q21 + 3q22)q2

2(1 − q12)(1 + q2 + q4 + q6 + q8)(1 + q4)
(30)

is obtained. An upper bound on equation (29) can be found by taking logarithms and then
using the inequality x � log(1 + x). This shows that

log((−qt; q2)∞(−q/t; q2)∞(q2; q2)∞) �
∞∑
i=1

(log(1 + q2i+1t) + log(1 + q2i+1/t))

� q(t + 1/t)

1 − q2
. (31)

Thus, taking the factor (1 − q2) from (1 − q12) in equation (30), and considering the last
equation, it follows from equation (28) that log (S(t, q) + S(1/t, q) − 1) ∼ (1 − q2)−1 as
q ↗ 1−. Since S(1/t, q) is finite for t > 1 (and q � 1), the result is that S(t, q) ∼ eO(1/(1−q2))

along the line q = 1 with t � 1.
If it is noted that − log q2 ≈ 1 − q2 as q → 1−, then one might propose that

log (S(t, q) + S(1/t, q) − 1) ∼ O(1/|log q2|). This result can be made more precise by
using known asymptotics for the q-exponential [15], see also Prellberg [17].

Lemma 2.1 (Moak 1984 [15]). Suppose that 0 < q < 1 and define r = e−4π2/|log q|. Then

(q; q)∞ = (r/q)1/24
∞∑

n=−∞
[rn(6n+1) − r(3n+1)(2n+1)]

√
2π

|log q| .

Taking logarithms gives the following asymptotic formula:

log(q; q)∞ = −π2

6|log q| +
1

2
log

[
2π

|log q|
]

+ O(|log q|)

≈ −π2

6|log q| +
1

2
log

[
2π

1 − q

]
+ O(|log q|).

A proof of lemma 2.1 can be found in [17]. A uniform asymptotic approximation to
(t; q)∞ is given in lemma 2.2, see [17].

Lemma 2.2 (Prellberg 1994 [17]). For complex t such that |arg(1 − t)| < π and q ∈ (0, 1),

log(t; q)∞ = Li2(t)

log q
+

1

2
log(1 − t) + R1

where Li2(t) = ∑
n>0[tn/n2] is the dilogarithm. Moreover, R1 = O (|log q|), and so R1

approaches zero uniformly as q ↗ 1− for any t in a compact domain with |arg(1 − t)| < π .

If t = 1, then lemmas 2.1 and 2.2 can be used to determine an asymptotic approximation
to S(1, q). The starting point is equation (25); where 0 < q < 1. The factor (−q; q2)∞ can
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Figure 2. A plot of S(1, q) against its approximations in equations (32) and in theorem 2.6.

be approximated using lemma 2.2, while (q2, q2)∞ can be approximated accurately by taking
only the n = 0 term in the series in lemma 2.1. Putting this together shows that

S(1, q) ≈ 1

2
+

1 + q

2q1/12

√
2π

|log q2| exp(−(π2/6 + 2Li2(−q))/|log q2|). (32)

This approximation is particularly good as q → 1−. For example, S(1, 0.99) = 9.3400 . . .,
while the approximation gives 9.3253 · · ·.

In figure 2 both S(1, q) and its approximation in equation (32) are plotted against q. The
approximation is remarkably good over the entire range of q away from q = 0. In this graph
the approximation S(1, q) = 1/2 +

√
π |log q|−1/2/2 was also plotted—this will be obtained

by applying the Euler–MacLaurin formula to S(1, q) in section 1.2.
The dilogarithm above also satisfies the following equality for negative argument3:

Li2(−q) = − 1
2 (log q)2 − π2

6
− Li2(−1/q). (33)

The series expansion for Li2(−1/q) is uniformly convergent for all |q| � 1 and equation (33)
gives a slightly different approximation for S(1, q):

S(1, q) ≈ 1

2
+

1 + q

2q7/12

√
2π

|log q2| exp((π2/6 + 2Li2(−1/q))/|log q2|). (34)

Comparison with equation (3) shows that one might expect 2 − αt = −1/2. If the relation
in equation (5) applies in this model, then this would indicate that φ = 1/2; it was already
indicated that 2 − αu = −1, following equation (21).

To determine asymptotics for S(t, q) as q → 1− and t > 1, consider equation (28).
Assume that qt > 1 (with t fixed), and note that S(1/t, q) ↗ t4/(t4 − 1) = 1 + O(t−4) as

3 To see this, note that Li2(s) satisfies the following equalities:

Li2(−s) − Li2(1 − s) +
1

2
Li2(1 − s2) = −π2

12
− (log s)(log(1 + s))

Li2(s) + Li2(1 − s) = π2

6
− (log s)(log(1 − s))

Li2(1 − s) + Li2(1 − 1/s) = − 1

2
(log s)2

Li2(s) + Li2(−s) = 1

2
Li2(s

2).

Apply these to Li2(−s) to prove the identity. Alternatively, the identity can also be found using Maple V [14].
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q ↗ 1−. Approximate the q-Pochhammer symbols (−tq; q)∞ and (q2; q2)∞ by lemmas 2.1
and 2.2, and use equation (33) to see that

S(t, q) ≈
√

2π(1 + qt4)(1 + q/t4)

|log q2| exp((π2/6 + Li2(−qt4) + Li2(−q/t4))/log q2)

+ 1 + O(t−4). (35)

Since q → 1−, one may replace |log q2| by 1 − q2, and this shows that S(t, q) ∼
exp(π2/6(1 − q2) + O(log q))/

√
1 − q2, as claimed in the paragraph before lemma 2.1.

The radius of convergence of S(t, q) is the line q = 1 in the tq-plane. Along the line
segment q = 1 and 0 � t < 1 the generating function S(t, q) is finite, with finite left derivative
to q. For q < 1 and t > 1 the singular behaviour of S(t, q) is given by equation (35), and as
q ↗ 1−, S(t, q) → ∞. In this model these are essential singularities, but their characters are
qualitatively different from those on the critical curve with t < 1. At t = 1 the behaviour is
given by equation (32), and for t > 1, equation (35) gives an approximate asymptotic formula.
Taken together, we find that

S(t, q) ≈
q→1−




1

1 − t4
if 0 � t < 1

1

2
+

1 + q

2q1/12

√
2π

|log q2| eH(q) if t = 1

√
2π(1 + qt4)(1 + q/t4)

|log q2| eL(t,q) if t > 1.

(36)

where

H(q) = −(π2/6 + 2Li2(−q))/|log q2|
L(t, q) = −(π2/6 + Li2(−qt4) + Li2(−q/t4))/|log q2|. (37)

Observe that limq→1− H(q) = − log 2, while L(t, q) approaches ∞ as q → 1−. Moreover,
one may use Maple V [14] to develop asymptotics for L(t, q) as q → 1− and t → 1−. It
follows that

L(t, q) = 4|log t |2
|log q| − log 2 − 4|log t |2 + O(log3 t) + O(log q). (38)

In other words,

S(t, q) ∼ 1√|log q|G0

(
2|log t |√|log q|

)
(39)

for some function G0, and if we define the scaling fields s = |log t | and g = |log q|, then

S(t, q) ∼ 1√
g
G0

(
s√
g

)
. (40)

Comparison with equation (3) shows that 2 − αt = −1/2 and φ = 1/2. Comparing this
instead to equation (4) shows that 2 − αu = −1, and this demonstrates that in this model,
the relationship in equation (5) is respected. The diagram in figure 3 illustrates the different
phases in this model.

The line q = 1 is a phase boundary in the phase diagram (qt-plane) separating a phase
of small squares as q < 1 from a phase of squares of unbounded size if q > 1. The only
interesting phase behaviour occurs along the phase boundary. If t < 1, then the generating
function S(t, 1) < ∞, and if t � 1, then S(t, 1) = ∞. The entire phase boundary is an
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Figure 3. The phase diagram of inflating lattice squares. A phase boundary q = 1 separates
a phase of finite squares from a phase of infinite (inflated) squares. The phase boundary is a
line of essential singularities in the generating function. There is scaling around the point at
(t, q) = (1, 1), consistent with tricritical scaling theory. For values of t < 1 the transition at q = 1
is through a finite generating function where squares of arbitrary large size make a negligible
contribution. For values of t > 1 the transition at q = 1 has a generating function divergent due
to contributions of squares of arbitrary large size.

essential singularity in S(t, q), consistent with a first-order transition in the model, separating
finite from infinite squares. In the usual (canonical) picture, the free energy density in this
model is F(t) = − log qc(t) = 0, so that the model is not interesting from a statistical
mechanics point of view.

2.2. Cubical vesicles

The simplest three-dimensional model of a vesicle in the cubic lattice would be a cube
composed of unit cubes. The generating function of this model in the perimeter–area–volume
ensemble is given by

T (t, q, p) = 1 + t12q6p + t24q24p8 + · · · =
∞∑

n=0

t12nq6n2
pn3

. (41)

The generating variable t generates perimeter edges in the surface of the cube where adjacent
unit squares meet at right angles, and q generates the surface area of the cube, while p generates
volume. It follows that

T (t, q, p) = 1 + t12q6pT
(
tq
√√

p, q
√

p, p
)
. (42)

The generating function T (t1/3, q1/6, 1) = S(t, q) was considered in section 2.1; thus cubical
vesicles in the perimeter–area ensemble are equivalent to square vesicles in the perimeter–area
ensemble. Observe that

T (t, 1, 1) = 1

1 − t12
(43)

and from equation (25) it follows

T (1, q, 1) = 1
2 (1 + (−q6, q12)2

∞(q12, q12)∞). (44)

In addition, if |q| < 1 then T (t, q, 1) is convergent, and there is an essential singularity at
q = 1. The phase diagram is given in figure 3, and the scaling around the critical point at
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t = q = 1 is also the same as given there. Scaling exponents in this ensemble are also identical
to these for square vesicles, with φ = 1/2, and 2 − αt = −1/2 while 2 − αu = −1.

The situation becomes more complicated if p �= 1. T (t, q, p) is convergent for all
|p| < 1, and divergent if p > 1. This generating function is also interesting if p = 1, as
shown above. Since the asymptotics for T (t, 1, 1) and T (1, q, 1) are given in equation (36),
T (1, 1, p) should be considered next. The rich set of mathematical results that produced
expressions for S(t, q) are not available in this model. Instead, the Euler–MacLaurin formula
[9] can be used.

Theorem 2.3 (Euler–MacLaurin). Suppose that f is 2m times continuously differentiable in
the interval [0, N] : (f ∈ C2m[0, N]). Then

N∑
n=0

f (n) =
∫ N

0
f (x) dx +

f (0) + f (N)

2
+

m−1∑
n=1

B2n

(2n)!
(f (2n−1)(N) − f (2n−1)(0)) + Rm

where the remainder term is

Rm =
∫ N

0

[
B2m − B2m(x − 
x�)

(2m)!

]
f (2m)(x) dx.

Bn(x) is the nth Bernoulli polynomial, and Bn = Bn(0) are Bernoulli numbers. In particular,
B2 = 1/6.

First apply this formula to S(t3, q6) = T (t, q, 1) to reproduce the asymptotics of S(t, q)

derived in the previous section. In particular, observe that

T (t3, q6) =
∞∑

n=0

t12nq6n2 =
∫ ∞

0
t12xq6x2

dx +
1

2
+ R1. (45)

The integral is related to a complementary error function, and the error term R1 can be bound
as follows:

|R1| =
∣∣∣∣
∫ ∞

1

1

2
[B2 − B2(x − 
x�)]

[
d2

dx2
t12xq6x2

]
dx

∣∣∣∣ �
∣∣∣∣12B2

∫ ∞

1

[
d2

dx2
t12xq6x2

]
dx

∣∣∣∣
� 6B2t

12q6(|log t | + |log q|). (46)

The integral in equation (45) can now be evaluated so that a uniform approximation for
T (t, q, 1), for q ∈ [q0, 1] and t ∈ [t0, 1] is obtained, where q0 and t0 are arbitrary but fixed
in (0, 1):

T (t, q, 1) = 1

2
+
√

π

24|log q| e
6|log2 t |
|log q|

(
1 − erf

(
−√

6|log t |√|log q|

))
+ R1. (47)

Defining G(x) = ex2
(1 − erf(x)) then shows that

T (t, q, 1) = 1

2
+
√

π

24|log q|G
(√

6|log t |√|log q|

)
+ R1. (48)

Define the scaling fields s = |log t | and x = |log q|, where 0 < q < 1 and 0 < t � 1, and the
result is the following theorem.
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Theorem 2.4. Let s = |log t | and x = |log q|. The generating function T (t, q, 1) of cubical
vesicles, and the generating function S(t, q) of square vesicles, where S(t3, q6) = T (t, q, 1),
is given by

T (t, q, 1) = 1

2
+

√
π

24x
G
(√

6s√
x

)
+ R1

= 1

2
+

√
π

12s

[√
6s√
x

]
G
(√

6s√
x

)
+ R1.

The error term is bound by

|R1| � 6B2t
12q6(|log t | + |log q|)

and G(z) = ez2
(1 − erf(z)). This recovers the scaling in equation (40). Moreover, R1

is uniformly bounded in any rectangle [q0, 1] × [t0, 1] for t0 and q0 in (0, 1), and so the
approximation is uniform in this closed rectangle.

Consider next the application of the Euler–MacLaurin formula to T (1, 1, p). The result
is that

T (1, 1, p) =
∫ ∞

0
px3

dx +
1

2
+ R1 (49)

where

|R1| = 1

2

∣∣∣∣
∫ ∞

0
(B2 − B2(x − 
x�))

(
d2

dx2
px3

)
dx

∣∣∣∣
� B2

2

∣∣∣∣
∫ ∞

0

d2

dx2
px3

dx

∣∣∣∣ = B2

3

(
18

e

)2/3

|log p|1/3.

Evaluating the integral in equation (49) produces the approximation in the next theorem.

Theorem 2.5. The generating function T (1, 1, p) is approximated by

T (1, 1, p) = 1

2
+

2
√

3π

9�(2/3)
|log p|−1/3 + R1

where |R1| � [B2/3](18/e)2/3|log p|1/3. The bound on R1 shows that this approximation is
uniform in any closed interval [p0, 1], where p0 is arbitrary and fixed in (0, 1).

The approximation in theorem 2.5 is very accurate for p ∈ (0, 1); in figure 4 the curve
T (1, 1, p) and its approximation in theorem 2.5 are plotted. This approximation is also
different from that obtained in the two-dimensional model of squares in equation (32). In this
model the q-exponential factors were approximated using lemmas 2.1 and 2.2. In the above,
only the Euler–MacLaurin formula was used. This approximation converges uniformly with
increasing m in theorem 2.3 on a compact interval in (0, 1).

One may similarly use theorem 2.3 to approximate the generating function S(1, q6) =
T (1, q, 1) of two-dimensional squares.

Theorem 2.6. The generating function S(1, q) of lattice squares is approximated by

S(1, q) = 1

2
+

√
π

2
|log q|−1/2 + R1

where |R1| � B2 e−1/2√2|log q|. This bound shows that the approximation is uniform on any
closed interval [q0, 1] where q0 is fixed and arbitrary in (0, 1).
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Figure 4. Plots of T (1, 1, p) and its approximation in theorem 2.5.

The approximation in theorem 2.6 is also plotted in figure 2, in addition to S(1, q) and
its approximation in equation (32). Theorem 2.6 can also be derived from equation (32) by
noting that limq→1− [(π2/6 + 2Li2(−q))/ log q2] = − log 2. Approximating q = 1 − ε (while
noting that (1 + q) = 2 − ε and q1/12 ≈ 1 − ε/12) then gives theorem 2.6. The approximation
in theorem 2.6 now gives the following corollary.

Corollary 2.7. The generating function T (1, q, 1) is approximated by

T (1, q, 1) = S(1, q6) = 1

2
+

√
π

2
|6 log q|−1/2 + R1

where |R1| � B2 e−1/2√12|log q|. This bound shows that the approximation is uniform on
any closed interval [q0, 1] where q0 is arbitrary and fixed in (0, 1).

Determining the full behaviour of T (t, q, p) is more difficult; so consider first the case
that t = 1. Maple V [14] shows that for 0 < q and for 0 < p < 1,∫ ∞

0
px3

q6x2
dx = 2

√
3π

9�(2/3)|log p|1/3
F1,1

([
1

6

]
,

[
1

3

]
; 32σq |log3 q|

|log2 p|

)

− σq |log q|
3|log p| F2,2

([
1

2
, 1

]
,

[
2

3
,

4

3

]
; 32σq |log3 q|

|log2 p|

)

+
�(2/3)|log2 q|

9|log p|5/3
F1,1

([
5

6

]
,

[
5

3

]
; 32σq |log3 q|

|log2 p|

)

where the Fa,b(·) are hypergeometric functions, and where

σq =
{

1 if q � 1

−1 if 0 < q < 1.

Taking q → 1− reduces the integral to theorem 2.5. In that case the first term is the only
surviving contribution. One may also observe that

√
|log q|

∫ ∞

0
px3

q6x2
dx =

[
2
√

3π

9�(2/3)321/6

(
32|log3 q|
|log2 p|

)1/6

F1,1

([
1

6

]
,

[
1

3

]
; 32σq |log3 q|

|log2 p|

)

− σq

3
√

32

(
32|log3 q|
|log2 p|

)1/2

F2,2

([
1

2
, 1

]
,

[
2

3
,

4

3

]
; 32σq |log3 q|

|log2 p|

)
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+
�(2/3)

9.325/6

(
32|log3 q|
|log2 p|

)5/6

F1,1

([
5

6

]
,

[
5

3

]
; 32σq |log3 q|

|log2 p|

)]

= F
(

32σq |log3 q|
|log2 p|

)
(50)

where

F(x) =
[

2
√

3π |x/32|1/6

9�(2/3)
F1,1

([
1

6

]
,

[
1

3

]
; x

)
− σx |x/32|1/2

3
F2,2

([
1

2
, 1

]
,

[
2

3
,

4

3

]
; x

)

+
�(2/3)|x/32|5/6

9
F1,1

([
5

6

]
,

[
5

3

]
; x

)]
. (51)

With these results, it follows by theorem 2.3 that

T (1, q, p) = 1

2
+ |log q|−1/2F

(
32 log3 q

log2 p

)
+ R1

= 1

2
+ |log p|−1/3

[ |log2 p|
|log3 q|

]1/6

F
(

32 log3 q

log2 p

)
+ R1

= 1

2
+ |log p|−1/3H

(
32 log3 q

log2 p

)
+ R1 (52)

where H(x) = |x|1/6F(x).

Theorem 2.8. The generating function T (1, q, p) is approximated by

T (1, q, p) = 1

2
+ |log q|−1/2F

(
32 log3 q

log2 p

)
+ R1

= 1

2
+ |log p|−1/3

[ |log2 p|
|log3 q|

]1/6

F(32 log3 q/ log2 p) + R1

= 1

2
+ |log p|−1/3H

(
32 log3 q

log2 p

)
+ R1

where F(x) is given by equation (51) and H(x) = |x|1/6F(x). The error term is bounded by

|R1| � B2

2

∑
i

√
6ri |log p| + 2|log q|pr3

i qr2
i

where the summation is over the non-negative roots {ri} of the equation

9r4 log2 p + 12r3 log p log q + 4r2 log2 q + 6r log p + 2 log q = 0.

The bound is uniform for (p, q) in the rectangle [p0, 1]× [q0, 1] where p0 and q0 are arbitrary
and fixed in (0, 1).

Proof. It only remains to bound the remainder term. Using Maple [14], the remainder term
can be bound by

|R1| � B2

2

∣∣∣∣
∫ ∞

0

d2

dx2
px3

q6x2
dx

∣∣∣∣ � B2

2

∑
i

∣∣6r2
i log p + 4ri log q

∣∣pr3
i qr2

i

where the summation is over the non-negative roots {ri} of

9r4 log2 p + 12r3 log p log q + 4r2 log2 q + 6r log p + 2 log q = 0.



Inflating square and rectangular lattice vesicles 3917

0.0 0.5 1.0 1.5 2.0
q

0.0

0.5

1.0

1.5

2.0

p ................................................................................................................................................................................................................................................................................................................................................................................................ ..............................................
............................................................................

..................................................................................
..........

....................................................................................................................................................................................◦
| log q2|−1/2

| log p|−1/3
.............
.............
.............
.................................................................................. ...........

infinite phase

finite phase

Figure 5. The phase diagram of cubical vesicles in the area–volume plane. There is a critical
point at p = q = 1, and the divergences in the generating function T (1, q, p) on approaching
to this point are indicated in two directions. Asymptotically, T (1, q, p) is a function of the ratio
32 log3 q/ log2 p, see equation (52), and this proves that the crossover exponent in this model is
φ = 2/3. For q < 1 the transition at p = 1 has a finite generating function; the contribution from
cubes of arbitrary large size is negligible. If q > 1, then the generating function at the transition
p = 1 is divergent and is dominated by the contributions of vesicles of unbounded size.

The result then follows. If p → 1− in theorem 2.8, then r → 1/
√

|log q2| is the only root.
In this case |R1| � B2

√
|log q2|/√4e. Thus, the bound is uniform for (p, q) in the rectangle

[p0, 1] × [q0, 1] for 0 < p0 < 1 and 0 < q0 < 1. �

The phase diagram for T (1, q, p) is plotted in figure 5. This diagram is similar to figure 3,
except that the behaviour of T (1, q, p) is different along the critical curve p = 1. The point
q = p = 1 is a multicritical point, and theorems 2.5 and 2.7 show that T (1, q, 1) ∼ |log q2|−1/2

as q → 1− and T (1, 1, p) ∼ |log p|−1/3 as p → 1−. Defining the scaling fields s = |log q2|
and g = |log p| then gives

T (1, q, p) = 1

2
+

1√
s
F
(

32σqs
3

g2

)
. (53)

Thus, one may identify 2 − αu = −1/2, φ = 2/3 and 2 − αt = −1/3. Equation (5) is
satisfied, and the scaling is completely consistent with equations (3) and (4).

The behaviour of T (t, q, p) can now be estimated by noting that
∞∑

n=0

t12nq6n2
pn3 = q−6A2

p−2A3
∞∑

n=0

(
t12q12Ap3A2)n

(q6p3A)(n−A)2
p(n−A)3

= q−6A2
p−2A3

∞∑
n=0

T nQ6(n−A)2
P (n−A)3

where Q6 = q6p3A and P = p, while T = t12q12Ap3A2
. If one chooses

A = −2
|log q|
|log p| ± 2

√( |log q|
|log p|

)2

− |log t |
|log p| (54)

then T = 1, and it follows that
∞∑

n=0

t12nq6n2
pn3 = q−6A2

p−2A3
∞∑

n=0

Q6(n−A)2
P (n−A)3

. (55)
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This may be approximated similarly to T (1, q, p) above, and the result includes again
functions of the ratio log3 q/ log2 p. For example, note that qA2 ∼ log3 q/ log2 p and
pA3 ∼ log3 q/ log2 p if t = 1. The activity t only appears under the square root in the
ratio log t/ log p, and surface effects dominate the effects of the corners and edges of the
cubes.

If the terms with n < A in equation (55) are ignored, then

log Q = ±6 log q

√
1 − |log t ||log p|

|log2 q| (56)

and

q−6A2
p−2A3 = exp

(
16σq

( |log3 q|
|log2 p|

)((
1 − |log t ||log p|

|log2 q|

)3/2

+

(
1 −

√
1 − |log t ||log p|

|log2 q|

)))

≈ exp


16σq

( |log3 q|
|log2 p|

)
√

1 − |log t ||log p|
|log2 q|

3

+

√
1 − |log t ||log p|

|log2 q|






(57)

then substitution of Q and P in equation (52) will give an approximate asymptotic
expansion for T (t, q, p). Of particular interest is the observation that the combination

|log q|
√

1 − |log t ||log p|/|log2 q| occurs; this suggests that the natural scaling axes in this

model are |log p| and |log q|
√

1 − |log t ||log p|/|log2 q|. The natural plane for analysing the
model is the Q − p plane, and the generating function has critical behaviour around the point
Q = p = 1. The crossover exponent is still 2/3 in this model, since the ratio log3 Q/ log2 p

is obtained in the generating function.

3. Rectangular and rectangular box vesicles

The limiting free energies of square and cubical vesicles do not have a non-analytic point
corresponding to critical points separating two phases in those models. In particular, in each
case F(t) = − log qc(t) = 0, or F(t, q) = − log pc(t, q) = 0, where qc(t) is the radius of
convergence of S(t, q) and pc(t, q) is the radius of convergence of B(t, q, p). Nevertheless,
underlying these models are rich mathematical structures of combinatorial identities and
functions, and there is a connection to the expected standard scaling forms based on tricritical
scaling theory. It is interesting to observe that in these very simple models of square and
cubical vesicles, there is behaviour akin to a phase change. Putting q = 1 in S(t, q) and
then increasing t takes the model at tc = 1 from a phase where the generating function is
dominated by vesicles of finite area (when t < tc), to a phase where vesicles of unbounded
area dominate the generating function (when t > tc). Technically, these changes scale in the
classical fashion around the critical point (qc, tc) = (1, 1) in the qt-plane, but there is no
interesting thermodynamic change at this point.

Perhaps the simplest model of vesicles that exhibit a deflated–inflated thermodynamic
phase change is a model of rectangular vesicles in the square lattice. The three-dimensional
counterparts of rectangular vesicles are rectangular box vesicles. These models are
considerably more complex than square and box vesicles, and only partial results below
are obtained. In this section, I consider these models in turn.
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3.1. Rectangular vesicles

Consider rectangular vesicles in the square lattice. The area–perimeter generating function is
given by

R(t, q) =
∑

i>0,j>0

t2(i+j)qij =
∑
n�1

t2(n+1)qn

1 − t2qn
(58)

where as before, q generates area, and t perimeter. There are simple poles in R(t, q) along
curves 1 − t2qn = 0 for n = 1, 2, . . . . These poles accumulate on the line q = 1 in the
tq-plane; and so q = 1 is an essential singularity in R(t, q) for all t > 0. The radius of
convergence of R(t, q) is

qc(t) =
{

1 if t � 1

1/t2 if t > 1.
(59)

The limiting free energy in this model is given by

F(s) =
{

0 if t � 1

2 log t if t > 1.
(60)

There is a non-analyticity in F(t) at t = 1, and this is a tricritical point in the phase diagram,
corresponding to a transition of deflated rectangles for t > 1 to a phase of inflated rectangles
(on average almost square) for t < 1.

One may distinguish between horizontal and vertical edges in this model. Suppose that
horizontal edges are generated by u and vertical edges by v, and that the generating function
is R(u, v, q). Then

R(u, v, q) =
∞∑
i=1

uivqi

1 − vqi
. (61)

Thus, the generating function R(u, v, q) satisfies the recurrence

R(u, v, q) = uvq

1 − vq
+ uR(u, vq, q). (62)

This recurrence becomes invalid if one puts u = v = t , but it can be used to study the
properties of the generating function [18].

The generating function R(t, q) is finite if q = 1 and t < 1. In this case

R(t, 1) = t4

(1 − t2)2
. (63)

Thus, R(t, q) → t4/(1 − t2)2 if t < 1 and q → 1−. If t > 1, assume that t2q < 1 so that
1 > 1 − t2qn > 0 for all n � 1. Hence

R(t, q) = t4q

1 − t2q
+

∞∑
n=2

[
1 − t2q

1 − t2qn

]
t2(n−1)qn−1 (64)

and observe that∣∣∣∣∣
∞∑

n=2

[
1 − t2q

1 − t2qn

]
t2(n−1)qn−1

∣∣∣∣∣ � (1 − t2q)

∞∑
n=2

(t2q)n−1 = t2q. (65)

In other words,

R(t, q) = t4q

1 − t2q
+ O(t2q) if t > 1 and t2q → 1−. (66)
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This exposes a curve of simple poles along t2q = 1 in the tq-plane; since these poles are
due to rectangles of minimal area and maximal perimeter, this divergence is due to rectangles
composed of a single row of unit squares.

In the event that t = 1, the asymptotics are more complicated. Every term in
R(1, q) becomes singular as q → 1−. Observe that R(1, q) = ∑

n>0[qn/(1 − qn)] =[∑
n>0

qn

(1−qn)/(1−q)

]/
(1 − q) and limq→1− [(1 − qn)/(1 − q)] = n. Thus, one might quess

that R(1, q) ∼ [log(1 − q)]/(1 − q) as q → 1−. The Euler–MacLaurin theorem can be used
to find a better asymptotic expression, see [17] for similar results.

Theorem 3.1 [19]. R(1, q) has asymptotic expansion

R(1, q) = log(1 − q)

log q
+

q

2(1 − q)
+

∞∑
n=1

B2n

(2n)!
[log q]2n−1

[(
q

d

dq

)2n−1
q

1 − q

]
.

Proof. Apply the Euler–MacLaurin formula to R(1, q) = ∑
m>0

[
qm

1−qm

] = ∑∞
m=0 f (m),

where f (m) = qm+1

1−qm+1 . Put u = qm+1 and observe that

f (n)(m) =
(

d

dm

)n

f (m) = (log q)n
[(

u
d

du

)n
u

1 − u

]∣∣∣∣
u=qm+1

.

Moreover, f (n)(∞) = 0 and

f (n)(0) = (log q)n
(

q
d

dq

)n
q

1 − q
.

Thus,
∞∑

n=1

qn

1 − qn
=
∫ ∞

1

qx

1 − qx
dx +

[
q

2(1 − q)

]
−

∞∑
n=1

B2n

(2n)!
(log q)2n−1

[(
q

d

dq

)2n−1
q

1 − q

]
.

Finally, observe that∫ ∞

1

[
qx

1 − qx

]
dx = 1

log q

∫ 0

q

du

1 − u
= log(1 − q)

log q
. (67)

This proves the theorem. �

Truncating the series in theorem 3.1 gives the following approximation:

Corollary 3.2. One may approximate R(1, q) by

R(1, q) = log(1 − q)

log q
+

q

2(1 − q)
− Bqq log q

(1 − q)2

where Bq is a function bounded by |Bq | � B2.

Proof. Use theorem 3.1, and bound Rm in theorem 2.3: substitute u = qx below,

|Rm| =
∣∣∣∣
∫ ∞

1

B2m − B2m(x − 
x�)
(2m)!

f (2m)(x) dx

∣∣∣∣
� B2m

(2m)!
|log q|2m−1

∫ q

0

∣∣∣∣∣
(

u
d

du

)2m [
u

1 − u

]∣∣∣∣∣ du

= B2m

(2m)!
|log q|2m−1

∫ q

0

∣∣∣∣∣ d

du

((
u

d

du

)2m−1 [
u

1 − u

])∣∣∣∣∣ du

= B2m

(2m)!
|log q|2m−1

(
u

d

du

)2m−1 [
u

1 − u

]∣∣∣∣
q

0

.
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Figure 6. R(1, q) and its approximation in corollary 3.2 plotted against q. The two curves collapse
to one on this scale. The approximation is not uniform in [0, 1], but the error is bounded as in
equation (69).

The derivatives
(
u d

du

)2m−1[ u
1−u

]
can be shown to equal u

(1−u)2m P2m−2(u) where Pn(u) is a
polynomial in u with positive coefficients and degree n with Pn(0) = 1 and Pn(1) = (n + 1)!.
Taking q → 1− in the above increases the bound on |Rm|. Hence

|Rm| � B2m

m

(
q

1 − q

)[
log q

1 − q

]2m−1

.

Finally, use equation (67) and put m = 1 in theorem 2.3. �

The approximation is accurate over almost the entire range q ∈ [0, 1]. Figure 6 is
a plot of R(1, q) and its approximation in corollary 3.2 against q, and on that scale the two
curves are collapsed into a single curve. For example R(1, 0.99) = 515.393 3977 . . . while the
approximation gives 515.392 84 . . . . One may also check that R(1, 0.999) = 7480.777 . . . and
R(1, 0.9999) = 97 870.41 . . . while the approximation gives 7480.9722 . . . and 97 870.35 . . .,
respectively. The bound on Rm in corollary 3.2 increases as 1/(1 − q) as q → 1−, so that the
approximation is not uniform in [0, 1]. Instead,

(1 − q)R(1, q) = (1 − q) log(1 − q)

log q
+

q

2
+ (1 − q)R1 (68)

where

|(1 − q)R1| �
∣∣∣∣B2q log q

1 − q

∣∣∣∣ � B2 = 1

6
∀q ∈ [0, 1]. (69)

Since the ratio |log q|/(1 − q) approaches 1 as q → 1−, this shows that a uniform
approximation can be obtained for (1 − q)R(1, q) or for |log q|R(1, q).

Theorem 3.3. The function (1 − q)R(1, q) is uniformly approximated by q/2 + (1 −
q) log(1 − q)/ log q where q ∈ [q0, 1], and where q0 is arbitrary and fixed in (0, 1).

In the general case, the Euler–MacLaurin formula may be used to approximate R(t, q):
within its radius of convergence,

R(t, q) =
∞∑

n=1

t2(t2q)n

1 − t2qn
=
∫ ∞

1

t2(t2q)x

1 − t2qx
dx +

t4q

2(1 − t2q)
+ R1 (70)

where

|R1| � B2

2

(
t2q|log t2|

1 − t2q
+

|log q|
(1 − t2q)2

)
. (71)
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Evaluation of the integral proceeds by changing variables t2qx → t2qz, in which case it
follows that

R(t, q) = t4q

|log q|
∫ 1

0

z
|log t2 |
|log q|

1 − t2qz
dz +

t4q

2(1 − t2q)
+ R1. (72)

The integral can be evaluated using Maple V [14] and is a Lerch-Phi function:

R(t, q) = t2

|log q|
[ |log q|
|log t2| − Lerch-Phi

(
t2q, 1,

|log t2|
|log q|

)]
+

t4q

2(1 − t2q)
+ R1 (73)

where the Lerch-Phi function has the infinite series definition

Lerch-Phi(z, a, v) =
∞∑

n=0

zn

(v + n)a
. (74)

There are singularities in the Lerch-Phi function if z = 1 and a = 0 or a = 1. In the situation
here, a = 1, and Lerch-Phi (t2q, 1, |log t2|/|log q|) is singular when t2q = 1. Observe that
this is a simple pole in R(t, q); this is directly seen from equation (70). I take these results
together in the following theorem.

Theorem 3.4. The generating function R(t, q) is approximated by

R(t, q) = t2

|log q|
[ |log q|
|log t2| − Lerch-Phi

(
t2q, 1,

|log t2|
|log q|

)]
+ R1

where the remainder term R1 is bounded by

|R1| � t4q

2(1 − t2q)
(1 + B2|log t2|) +

B2

2

|log q|
(1 − t2q)2

.

In other words, for every t � 0 and for every q0 ∈ (0, 1), the function (1 − t2q)2R(t, q) is
uniformly approximated for points (t, q) with q0 < q < qc(t), and qc(t) is the critical curve
defined in equation (59).

In figure 7 the phase diagram for this model is presented. The inflation–deflation transition
occurs at the point (qc, tc) = (1, 1), and the scaling of the generating function around this
point is indicated. From equation (63) it appears that −2 be assigned to the exponent
2 − αu. However, equation (66) indicates that for all q = 1 − ε, where ε is small, there
is a simple pole as t2 approaches the critical curve. This is even the case if ε → 0+, and the
assignment 2 − αu = −1 can be made (as illustrated in figure 7). Note that if t = 1, then
R(1, q) = log(1 − q)/ log(q) + · · · as in corollary 3.2. Since (1 − q)A log(1 − q) → 0 as
q → 1− for any A > 0, one may argue that 2 − αt = −1 in this model. This would imply
that the crossover exponent is φ = 1 (from equation (5)).

Equations (72) and (73) show the scaling fields are s = |log t2| and g = |log q|. These
fields appear consistently in the ratio s/g = |log t2|/|log q| in R(t, q) in equation (73),
suggesting that φ = 1. If one should assign −2 to the exponent 2 − αu as suggested above,
then this model would not conform to the assumed scaling forms as set out in the introduction.
Thus, it appears that the correct value is 2 − αu = −1 in which case equation (5) is satisfied.
Lastly, note that the scaling of R(1, q) ≈ log(1 − q)/ log(q) is not a pure power law as one
would obtain by putting t = 0 in equation (3).
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Figure 7. The phase diagram of rectangular vesicles in an area–perimeter ensemble. The
generating function is R(t, q) (where t generates perimeter edges, and q generates area). The
generating function is approximated in equation (72). The behaviour of R(t, q) is indicated as
the critical point at (1, 1) is approached from two directions. The critical curve consists of essential
singularities along q = 1 and 0 < t � 1, and poles along t2q = 1. The essential singularities
are due to terms corresponding the rectangles inflated to maximum area (these are square shaped).
The poles are due to the rectangles consisting of a single row of unit squares, or maximal perimeter
and minimum area. Along the line q = 1, the generating function is given by t4/(1 − t2)2, but for
all q < 1, R(t, q) ∼ (q−1 − t2)−1 as t2 ↗ q−1.

3.2. Rectangular box vesicles

The three-dimensional version of rectangular vesicles is a model of rectangular box vesicles,
with the generating function

B(t, q, p) =
∑

i,j,k>0

t4(i+j+k)q2(ij+jk+ki)pijk. (75)

Consider first this model if p = 1. Then

B(t, q, 1) =
∞∑
i=1

∞∑
j=1

t4(t4q2)i+j q2ij

1 − t4q2i+2j
. (76)

If i + j = n is substituted, then

B(t, q, 1) =
∞∑

n=2

t4(t4q2)n

1 − t4q2n

n−1∑
m=1

q2(n−m)m. (77)

The contribution from the terms q2(n−m)m is at most n if |q| � 1, and there are singularities
along the curves 1 − t4q2n = 0, for n = 1, 2, . . . . These singularities accumulate on the curve
q = 1, which is an essential singularity in B(t, q, 1). The radius of convergence of B(t, q, 1)

is given by q = t−2 if t � 1; these are simple poles in the generating function. Thus, the
radius of convergence in this model is the same as for rectangular vesicles (see equation (59)).

The sum over q2(n−m)m in equation (77) can be approximated by an integral. Applying
the Euler–MacLaurin formula shows that

n∑
m=0

(q2)m(n−m) =
∫ n

0
(q2)x(n−x) dx + 1 + R1 (78)
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where |R1| � B2n|log q2|, since |q| � 1. Subtracting the first and last terms from the sum,
and evaluating the integral gives an error function,

n−1∑
m=1

(q2)m(n−m) =
√

π√
log q2

qn2/2 erf
(
n
√

log q2/2
)− 1 + R1. (79)

Since log q2 < 0 for q ∈ (0, 1), the argument of the error function is imaginary. It is
convenient to introduce the imaginary error function [7] by erf(ix) = i erfi(x), and it follows
that

n−1∑
m=1

(q2)m(n−m) =
√

π√
|log q2|q

n2/2 erfi
(
n
√

|log q2|/2
)− 1 + R1. (80)

Thus, the generating function B(t, q, 1) is a series over imaginary error functions:

B(t, q, 1) = t4
∞∑

n=2

(t4q2)n

1 − t4q2n

[ √
πqn2/2√
|log q2| erfi

(
n
√

|log q2|/2
)− 1 + R1

]
. (81)

At this point it becomes increasingly difficult to continue approximating B(t, q, 1) without
giving up some rigour. One may wish to approximate the above series by an integral, using
the Euler–MacLaurin formula, and then bound the error. If the error term is ignored, then

B(t, q, 1) ≈ t4√π

|log q2|2
∫ 1

0

x
|log t4 |
|log q2 | + |log2 x|

4|log q2 |

1 − t4x

[
erfi

(
|log x|

2
√

|log q2|

)
− 1 + R1

]
dx (82)

where |R1| � B2n|log q2|. Note the appearance of the ratio |log t4|/|log q2| in the integrand.
The crossover exponent between the scaling fields |log t | and |log q| appears to be φ = 1, this
value was also obtained in the model of rectangular vesicles.

If q = 1, then B(t, 1, 1) = t12/(1 − t4)3. This suggests assigning the value −3 to the
exponent 2 − αu, but caution is needed, as was observed in the model of rectangles; this value
may be inconsistent with a tricritical description of this model. To determine 2 − αt requires
the analysis of B(1, q, 1). Put t = 1 in equation (77). Then

B(1, q, 1) =
∞∑

n=2

q2n

1 − q2n

n−1∑
m=1

q2(n−m)m. (83)

The summation over q2(n−m)m can be approximated by using the result in equation (80). This
shows that

B(1, q, 1) =
√

π√
|log q2|

∞∑
n=2

q2n+n2/2

1 − q2n
erfi
(
n
√

|log q2|/2
)

+
∞∑

n=2

q2n+n2/2(R1 − 1)

1 − q2n
. (84)

Recall that |R1| � B2n|log q2| whenever n � 2.
Consider first the final term in equation (84) and use the Euler–MacLaurin formula

to approximate it. Since n will be summed to infinity, and since |q| < 1, note that
|R1 − 1| � |B2n|log q2| − 1| � 2B2n|log q2|, whenever n is large enough (but still finite).
Hence, there is a constant C such that∣∣∣∣∣

∞∑
n=2

q2n+n2/2(R1 − 1)

1 − q2n

∣∣∣∣∣ � C|log q2|
∣∣∣∣∣

∞∑
n=2

nq2n+n2/2

1 − q2n

∣∣∣∣∣ . (85)
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Proceed now by approximating the series by an integral. The remainder term in the Euler–
MacLaurin formula can be bound as follows:

|R1| � B2

2

∫ ∞

1

∣∣∣∣∣ d2

dx2

xq2x+x2/2

1 − q2x

∣∣∣∣∣ dx

= B2

2

∣∣∣∣q5/2(1 − q2 + (3 − q2) log q)

(1 − q2)2

∣∣∣∣
� B2

2

[
1

1 − q2
+

|log q2|(3 − q2)

2(1 − q2)2

]
. (86)

This is a bound on the error term in an Euler–MacLaurin approximation to the series in
equation (85). Next, approximate the series itself. Since the series is but one term in
equation (84), an upper bound on it would be sufficient. Note therefore that |nqn2/2| �
1/
√

(e/2)|log q2| and use this below:∫ ∞

2

xq2x+x2/2

1 − q2x
dx � 1√

(e/2)|log q2|

∫ ∞

1

q2x

1 − q2x
dx = |log(1 − q2)|√

e/2|log q2|3/2
. (87)

Taken together, the last result and the bound in equation (85) together with the results in
equations (86) and (87) show that∣∣∣∣∣

∞∑
n=2

q2n+n2/2(R1 − 1)

1 − q2n

∣∣∣∣∣ � C|log q2|
[ |log(1 − q2)|√

(e/2)|log q2|3/2

+
B2

2

[
1

1 − q2
+

|log q2|(3 − q2)

2(1 − q2)2

]]
. (88)

As q → 1−, the ratio |log q2|/(1 − q2) approaches 1. Hence, we obtain the following lemma:

Lemma 3.5. Let q0 ∈ (0, 1). Then there exists a constant C0 such that∣∣∣∣∣
∞∑

n=2

q2n+n2/2(R1 − 1)

1 − q2n

∣∣∣∣∣ � C0|log(1 − q2)|√
|log q2| (89)

for all q ∈ [q0, 1).

Returning to equation (84), all that remains is to approximate the series in the first term
by an integral, using again the Euler–MacLaurin formula. This gives

B(1, q, 1) =
√

π√
|log q2|

∫ ∞

1

exp(−|log q2|(y(y + 4)/4))

1 − exp(−y|log q2|) erfi
(
y
√

|log q2|/2
)

dy

+ Fq +
∞∑

n=2

q2n+n2/2(R1 − 1)

1 − q2n
(90)

where Fq can be shown to be bound by

|Fq |
[B2/4]

�
∣∣∣erfi

(√|log q2|/2
)∣∣∣ +

∣∣∣∣∣ 1√
π
√

|log q2|

∣∣∣∣∣ +

∣∣∣∣∣erfi
(√|log q2|/2

)
1 − q2

∣∣∣∣∣ . (91)

It is the case that

lim
q→1−

[
erfi
(√|log q2|/2

)
√

1 − q2

]
= 1√

π
. (92)
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This shows that the error bound on Fq is of order O
(
1/
√

1 − q2
)

as q → 1−. Therefore,
taking the bounds on the error terms together in lemma 3.5 and in equation (92), the following
theorem can be proved:

Theorem 3.6. For q in [q0, 1), and q0 < 1 close enough to 1, there exist a function Bq and a
constant C such that |Bq | < C, while

B(1, q, 1) =
√

π√
|log q2|

∫ ∞

1

exp(−|log q2|(y(y + 4)/4))

1 − exp(−y|log q2|) erfi
(
y
√

|log q2|/2
)

dy +
Bq√

1 − q2
.

Thus,
√

1 − q2B(1, q, 1) is uniformly approximated by the integral in [q0, 1].

Numerical estimates of the integral show that it is convergent if q < 1, but it diverges
as q → 1−. On the other hand, using the numerical procedures in Maple it appears that for
Y > 1 and 0 < Z < 1,

lim
q→1−

|log q2|Y
∫ ∞

1

exp(−|log q2|(y(y + 4)/4)) erfi
(
y
√

|log q2|/2
)

1 − exp(−y|log q2|) dy = 0

lim
q→1−

|log q2|Z
∫ ∞

1

exp(−|log q2|(y(y + 4)/4)) erfi
(
y
√

|log q2|/2
)

1 − exp(−y|log q2|) dy = ∞.

(93)

One may take this together in the following conjecture.

Conjecture 3.7. Suppose that q0 ∈ (0, 1). If q0 is close enough to 1, then there exist constants
C, c1 > 0 and c2 > 0, and a function L(q), such that

B(1, q, 1) = L(q)√
|log q2|3 +

Bq√
1 − q2

where Bq is a function such that
∣∣Bq

∣∣ � C, and there exist constants c1 and c2 such that

c1|log q2|Z � L(q) � c2|log q2|−Z

for any fixed Z > 0 and q → 1− and close enough to 1.

The scaling in conjecture 3.7 suggests that 2 − αt = −3/2, in the tq-plane. This scaling
is indicated in figure 8. Equation (82) suggests that φ = 1 in this model, not unexpected, since
it also has that value for rectangular vesicles considered in the previous section. The argument
following equation (82) seems to indicate that 2 − αu = −3 in this model, while equation (5)
would then imply that 2 − αu = −3/2. This apparent inconsistency could be resolved if one
performs the asymptotic analysis of B(t, q, 1) for q = 1 − ε, and so these results should be
considered incomplete.

Consider now this model in the qp-plane. Summing over k in equation (75) and putting
t = 1 give

B(1, q, p) =
∑
i,j�1

q2ij+2i+2jpij

1 − q2(i+j)pij
(94)

and note that this is convergent if (q, p) is in the region with p � 1 and q2p � 1, except
at the point (q, p) = (1, 1). For all other values of q and p, this is divergent. The radius of
convergence is

pc(q) =
{

1 if q � 1

0 if q > 1.
(95)
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Figure 8. The phase diagram of rectangular box vesicles in an area–perimeter ensemble. The
generating function B(t, q, 1) is approximated in equation (82). Scaling around the critical point at
(t, q) = (1, 1) is indicated from two directions. The critical curve consists of essential singularities
along q = 1 and 0 < t � 1, and poles along t2q = 1. Along the essential singularities with
t < 1 are q = 1 the generating function is dominated by rectangular box vesicles of maximal area
and minimal perimeter—these are cubical vesicles. Along the curve of poles, the vesicles have
minimal area and maximal perimeter, those are vesicles composed of a single row of unit cubes.
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Figure 9. The phase diagram of rectangular box vesicles in a volume–area ensemble. Scaling
around the critical point at (t, q) = (1, 1) is indicated from two directions. The critical curve
consists of essential singularities along q2p = 1 and p < 1, and along p = 1 and q < 1. Along
the critical curve p = 1 the vesicles have maximal volume and minimal area; they are cubical.
Along the critical curve q2p = 1 the vesicles have minimal volume and maximal area; they are
disc shaped. The behaviour |log q2|−3/2 along the critical line p = 1 is as in lemma 3.7.

It can be verified that if pq2 > 1 then equation (94) has divergent subsequences. For example,
if i = 1 and q2p > 1, then the sequence

∑∞
j=1

(q4p)j q2

1−q2(1+j)pj is divergent. This subsequence is a
sequence of vesicles of dimensions 1 × j × k; they have a rectangular disc shape. The phase
diagram of this ensemble is given in figure 9.

To determine the approach of B(1, q, p) to the point (1, 1), observe that the generating
function B(1, q, 1) was already considered above, and that it is approximated in theorem 3.6.
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Consider B(1, 1, p) next. Then

B(1, 1, p) =
∑

i,j,k�1

pijk =
∑
i,j�1

pij

1 − pij
(96)

and the summation over j can be approximated using the Euler–MacLaurin formula
(theorem 2.3):

B(1, 1, p) =
∞∑
i=1

[
log(1 − pi)

log pi
+

pi

2(1 − pi)
+ R(i)

]
(97)

where the remainder term is bounded for each 0 < p < 1 by

|R(i)| � B2

2

pi |log pi |
(1 − pi)2

. (98)

B(1, 1, p) in equation (97) may again be approximated by an integral. In the first place, note
that by corollary 3.2

∞∑
i=1

pi

2(1 − pi)
= log(1 − p)

2 log p
+

p

4(1 − p)
+ Fp (99)

where Fp is a remainder term bounded by

|Fp| � B2

2

p|log p|
(1 − p)2

. (100)

Secondly,
∞∑
i=1

log(1 − pi)

log pi
= 1

|log p|
∫ p

0

log(1 − y)

log y

dy

y
+

log(1 − p)

2 log p
+ Sp (101)

where Sp is a second remainder term. It is bounded by

|Sp| � B2

2

|(1 − p)|log(1 − p)| − p|log p‖
(1 − p)|log p| . (102)

This shows that

B(1, 1, p) = 1

|log p|
∫ p

0

log(1 − y)

log y

dy

y
+

log(1 − p)

log p
+

p

4(1 − p)
+

∞∑
i=1

R(i) + Fp + Sp.

(103)

It only remains to bound the sum over |R(i)|. Maple [14] shows that
∞∑
i=1

|R(i)| � B2

2

(1 − p)|log(1 − p)| + p|log p|
(1 − p)|log p| . (104)

Clearly, |Sp| �
∑∞

i=1 |R(i)|. Therefore, the remainder in equation (103) can be bound by∣∣∣∣∣
∞∑
i=1

R(i) + Fp + Sp

∣∣∣∣∣ � B2((1 − p)|log(1 − p)| + p|log p|)
(1 − p)|log p| +

B2

2

p|log p|
(1 − p)2

. (105)

Thus, the approximation to B(1, 1, p) in equation (103) is not uniform. However, since
|log p|/(1 − p) approaches 1 as p → 1−, it appears that (1 − p)B(1, 1, p) can be uniformly
bounded.
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Theorem 3.8. Let p0 ∈ (0, 1). There exists a constant K such that

B(1, 1, p) = 1

|log p|
∫ p

0

log(1 − y)

log y

dy

y
+

Rp

1 − p

where |Rp| � K if p ∈ [p0, 1).

The integral in theorem 3.8 diverges as p → 1−, but further investigation using Maple
[14] shows that

lim
p→1−

|log p|Z
∫ p

0

log(1 − y)

log(y)

dy

y
= 0

lim
p→1−

|log |log p‖Z

∫ p

0

log(1 − y)

log(y)

dy

y
= ∞

(106)

for every Z > 0. The integral diverges slower than any positive power of 1/|log p|, and faster
than any positive power of 1/|log |log p‖. This may be taken together in a lemma.

Lemma 3.9. Let p0 ∈ (0, 1). If p0 is close enough to 1, then there exist constants K, and
C1 > 0 and C2 > 0, and a function H(p), such that

B(1, 1, p) = H(p)

|log p| +
Rp

1 − p

where |Rp| < K and

C1|log |log p‖−Z � H(p) � C2|log p|−Z

for every Z > 0 and q → 1− and close enough to 1.

Thus, one might conclude that B(1, 1, p) ∼ H(p)/|log p|, where H(p) diverges slower
than 1/|log p|Z as p → 1−, for any Z > 0. Thus, it is now possible to assign values to the
exponents 2 − αt and 2 − αu. Conjecture 3.7 indicates that 2 − αu = −3/2, see figure 9.
Lemma 3.9 shows that 2 − αt = −1.

It remains to approximate the full generating function B(1, q, p). In this case, I
abandon all rigour, and only focus on using integrals to approximate the double summation in
equation (94). A tremendous amount of computer algebra shows that

B(1, q, p) ≈ 1

|log p| e
−2 |log q2 |3

|log p|2
∫ ∞

|log pq2|

1

s
exp(K(s) + sA(A − 1))Lerch-Phi(es(A−1), 1, A) ds

(107)

where

A = log q2

log p
+

(log q2)2

log p
K(s) = s

(
log q2

log p

)2

+
1

s

(
(log q2)2

log p

)2

.

Since |log pq2| → 0+ as both p → 1− and q → 1− the integral will be over the
interval [0,∞) as the critical point is approached. Observe the appearance of ratios
|log q2|/|log p|, |log q2|2/|log p|, |log q2|3/|log p|2 in this expression, suggesting a range of
crossover scaling between the scaling fields s = |log q2| and g = |log p|. Most notably,
approaching the scaling limit along curves with |log q2|/|log p| = 1, or |log q2|2/|log p| = 1,
or |log q2|3/|log p|2 = 1 may suggest different scaling behaviour, unless it can be demonstrated
that one of these behaviours dominates the others in the limit. In only one case do we observe
that the exponential factor in equation (107) is a constant, and that would indicate that φ = 2/3.
This would be consistent with the result in conjecture 3.7 and lemma 3.9.
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Table 1. Tricritical scaling exponents in vesicles.

Generating function 2 − αu 2 − αt φ

S(t, q) −1 −1/2 1/2
T (t, q, 1) −1 −1/2 1/2
T (1, q, p) −1/2 −1/3 2/3
R(t, q) −1 −1 1
B(t, q, 1) −3? −3/2 1
B(1, q, p) −3/2 −1 2/3

4. Conclusions

In this paper, I have examined the simplest models of vesicles in the two-dimensional square
and the three-dimensional cubic lattice. The intent is to examine the scaling of these models
close to a tricritical point in their phase diagrams, and the asymptotics of the generating
functions had to be determined to expose the scaling behaviour.

For square vesicles in the square lattice the scaling is exposed in particular in
equation (39), in theorem 2.4, and in figure 3. The tricritical point at (t, q) = (1, 1) splits
the critical curve qc(t) = 1 into two parts. If t < 1, then the transition between the finite
and infinite phases in figure 3 is through an essential singularity at q = 1, and the generating
function here is dominated by squares of finite area (since S(t, 1) < ∞ if t < 1, and squares
with arbitrary large area contribute only a finite value to the generating function). On the
other hand, if t > 1, then theorem 2.4 indicates that S(t, q) diverges as q → 1−, and on the
critical curve S(t, 1) is infinite, and dominated by squares of arbitrary (large) size. The scaling
exponents in this model can be directly determined from the scaling formulae in theorem 2.4,
and φ = 1/2 while 2 − αt = −1/2 and 2 − αu = −1. This model exhibits tricritical scaling
consistent with equation (5), and the scaling of the generating function has been verified as
in equations (3) and (4). The results are listed in table 1, and the model of cubical vesicles
in the perimeter–area ensemble with the generating function T (t, q, 1) has the same scaling
exponents.

Similarly, I was able to verify the scaling in a model of cubical vesicles in the area–
volume ensemble in three dimensions with the generating function T (1, q, p). In particular,
equations (3) and (4) are verified by theorem 2.8. The scaling exponents can be determined:
φ = 2/3 while 2 − αt = −1/3 and 2 − αu = −1/2. This model also exhibits the scaling
relation in equation (5). The scaling function is related to hypergeometric functions in
equation (51), and although the rich combinatorial structure evident in the model of squares
is not explicit in this model, it could nevertheless be present, and is apparently undiscovered.
These models can be generalized easily to higher dimensions, and while those are considerably
more complicated, it appears that one may conjecture

φ = d − 1

d
for hypercubical vesicles in d dimensions

in a d-dimensional hypervolume and (d − 1)-dimensional hypersurface area ensemble. In this
model, one may expect that 2 − αt = −1/d while 2 − αu = −1/(d − 1), and in that case
equation (5) gives the desired value for φ.

Rectangular and rectangular box vesicles are considerably more complicated models than
square and cubical vesicles. Asymptotics for the generating function R(t, q) are given in
corollary 3.2 and in theorem 3.3, as well as in theorem 3.4. I argue that these results indicate
that φ = 1 in this model if one considers the ratio of scaling fields in theorem 3.4; and in that
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case one would have 2 − αt = −1. However, an examination of R(t, q) where q = 1 − ε

suggests that 2 − αu = −1, and this provides a consistent value for the scaling exponents to
exhibit the scaling relation in equation (5).

Rectangular box vesicles in three dimensions give a phase diagram as presented in figures 8
and 9. In the perimeter–area ensemble the proposed crossover exponent appears to be φ = 1,
as in the two-dimensional version with the generating function R(t, q). However, while the
increase in dimension has preserved the value of φ in the scaling of the generating function
B(t, q, 1), apparently the values of 2 − αt and 2 − αu have changed. Conjecture 3.7 strongly
suggests that 2−αt = −3/2 in this ensemble. The fact that B(t, 1, 1) = t12/(1− t4)3 suggests
that 2−αu = −3, but this value would be inconsistent with the scaling relation in equation (5).
One may have to consider B(t, 1 − ε, 1) for small ε > 0 to extract this exponent.

In the area–volume–perimeter ensemble, the asymptotic form for B(1, q, 1) is proposed
in theorem 3.6 and conjecture 3.7. These suggest that 2 − αu = −3/2. B(1, 1, p) was
considered in lemma 3.9 and one may assign 2 − αt = −1. The (non-exact) proposed scaling
of B(1, q, p) in equation (107) is not inconsistent with φ = 2/3. This would indicate that
2 − αt = −1, consistent with the indications in lemma 3.9. There are also several ratios
involving the scaling fields |log q2| and |log p| in equation (107), and it may be that there are
several different scaling regimes around the tricritical point. The description of this model is
therefore still incomplete, and it deserves further attention. We are now examining this model
numerically.
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